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A General Approach to Limiting Normality

of the Product-Limit Estimator

by

A. J. Quinzi and T. M. Smith

ABSTRACT

Langberg, Proschan and Quinzi CAnn. Statist, (1981), to appear]

obtain strongly consistent estimators for the unobservable marginal

distributions of interest in the competing risks problem. These

estimators resemble those of Kaplan and Meier . Amer. Statist.

Assoc. (1958) 63] but are appropriate when (a) the risks are dependent

and (b) death may result from simultaneous causes. We establish

asymptotic normality of these estimators. Our result thereby extends

that of Breslow and Crovley [AM. Statist. (1974) 2J from the case of

a continuous survival function to an arbitrary survival distribution.

This preliminary report represents work currently in progress.
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0. Introduction and Summary

In the classical theory of competing risks [cf. the excellent

monograph of Birnbaum (1979)] it is assumed that (a) the risks, i.e., the

random variables of interest are independent and (b) death does not result

from simultaneous causes, The classical estimator for the marginal distri-

butions of interest in the competing risks problem is that of Kaplan and

Meier (19-58) or generalizations thereof [cf. Peterson (1975. 1977)] .

Langberg, Proschan,, and Quinzi (1981) [hereafter referred to as LPQ(1981 )]

obtain strongly consistent estimators for the unobservable marginal distri-

butions of interest when assumptions (a) and (b) above fail to hold. These

estimators resemble those of Kaplan and Meier (1958). In Section 1, we

examine the competing risks problem in the presence of dependent risks

and state a number of known results. In Section 2, we establish the

asymptotic normality of the LPQ(1981) estimators. Only the outline of

proof is given. This preliminary report represents work currently in

progress.
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1. The comtinx risks model

Let there be a finite number of causes of death labelled 1, ... , r.

We associate with each cause j a nonnegative random variable Ti, J 1,°.., r.

The random variable Tj represents the age at death if cause j were the only

cause present in the environment, The complete collection of random

variables T1 , .. Tr is not observed. Instead, only two quantities are

observed: the ae at death given by T= min (T1 , ... , Tr) and the cause

of death, labelled (, given by I O such that = I, where

represents the collection of nonempty subsets of {1, .. , ri . Thus,

= I if and only if T= Ti for each i E I and T# Ti for each i # I.

When death results from exactly one of the r possible causes, as is usually

assumed, then t is the index i for which - = Ti. The biomedical

researcher is interested in making inferences about the unobservable random

variables T1 , .. , Tr by using information from the observable quantities,

namely the life length 7' and cause of death In particular, he seeks

to estimate the 2 r - 1 survival probabilities

't)- P [min (Ti. J 4E J) > Q3
We use the following notation throughout. If T is a nonnegative random

variable with distribution function F, then F = 1 - F.

LPQ(1978) prove the following

Theorem 1.1 Let r= min (Ti, ... , Tr), where Ti, ... , Tr are nonnegative

random variables. Define F(t, I) = P(T > t, t(T) = I), F(t, I) =

P(T t, () = I), I F(t) = Z F(t. I) and F(t) Iooin st(t).

Then the following statements holds
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(i) A necessary and sufficient condition for the existence of a set of

independent random variables HI 1 44 which satisfy

P( T >t. (T) = I)= [min (HI, lEt) 1 t, H < H., each J I]

is that the functions F(., I), I C , have no common discontinuities in

the interval C0. a(F)), where O(F) = sup k.t: 1 - F(t) -* 0).

(ii) The random variables { HI, I C i J in (i) have corresponding survival

probabilities I E. ,i(t) = P(HI > t), which are uniquely

defined on the interval ( 0, it(F)j is follows:

(1.1) U (t) = F ((a)/F(a-)" exp t d.C I)/], 0 t < (F),a it 0

where FC(, I) is the continuous part of F(., I), the product is over the

discontinuities { a) of F(-, I), I , and the product over an empty

set is defined as unity.

Remark 1.2. Although motivated by the competing risks model, Theorem 1 .1

applies to any model where observations include (1) the time at which a

particular event occurs and (2) the identity of the causes (among a finite

number) which result in the occurrence of the event. For example, suppose

a personnel study is undertaken to study the departure patterns of employees

in a large company. The data on each employee might consist of (1) length

of stay, i.e., the time from arrival to termination, and (2) the reason for

termination. Here, each employee terminates (dies) for one or more of

several reasons (causes).

II
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Remark 1.3. Formula (1.1) represents each distribution in the independent

collection { HI, I E c I as a function of the (observable) cause-specific

subdistxibution functions F(", I), I E J , as well as the (observable)

survival function F(t) = P( 7 > t). It is this representation of distri-

butions in the independent collection by observable functions which plays

a key role in the estimation problem.

Let T = (TUi, ... , Tri), i = 1, ... , n, represent a random sample

from the joint distribution of the nonnegative random variables Ti , ... , T.

For each J Ed , let j (t) = P[min (Ta. J E J) > t]. For j 4 { , ... , r}

we write M (t) instead of M (t). For each i = 1, ... , n, only T i and

ti are observed, where Ti = min (T1I. ... , Tri) and = J whenever

7 i = T for each J C J and T. # T for each j ( J. It is important
ji3.11j

to note that we have not made either of the two classical assumptions, namely

(a) the risks, i.e., the random variables Ti, ... , Tr are independent; and

(b) death does not result from simultaneous causes, i.e., P(Ti = Tj) = 0

for i j J. If (a) and (b) hold, the function Mj(t) may be estimated

(consistently) [cf. Peterson (1975)] by using a generalized version of

the Kaplan-Meier (1958) (product-limit) estimator

(1.2) Mj(t) = UI[(n - i)/(n - i + 1)),
i

where the product is over the ranks i of those ordered observations T(i)

suc i ) Ir -et< '(anld l 1 corresponds to adeath from22at



least one cause j if J. If T' corresponds to a death from a cause
(n)

j ( J, then Hj(t) is defined to be zero for t > .(n)" Otherwise, M(t)

is undefined for t > 'r(n) In the original formulation by Kaplan and

Meier (1958), r = 2 and T1 corresponded to the time until death, while T2

corresponded to the time at which a loss occurred.]

Suppose now that it is not assumed that TI , .,,, Tr are independent.

LPQ(1981) prove the following

Theorem 1.4. Let TI, ... , Tr be nonnegative random variables such that

the functions F(t, I) = P( T< t, C () = I), I E 4 , have no common

discontinuities. DefineJ =( J EA1: Jn=I# . FixI Then

for each t E CO, ((F)],

(1.3) RIM) I[ 6II
J E I

if and only if

(1.4ia) ii (a)/RI(a") = f (a)/iF(a), a C-D.E

1, otherwise;

and

whore 0 is given by (1.1). D(jI ) is the set of discontinuities of the

function F (t, 1 ) =(1 t Cos)AeI), r = min (Ti, cI)and

Is is the complement of I in ti, .... r).
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Remark 1.5. By finding consistent estimators for the functions G- in (1.3),

LPQ(1981) establish that (.4a) and (1.4b) are necessary and sufficient

conditions on the joint distribution of TI , ... , Tr for the existence of

a consistent estimator of R in (1.3).

Remark 1,6. Suppose that the random variables "TI = min(Ti, i E I), I C A

have absolutely continuous distributions. Let mi(t) [respectively, 9I(t)]

and m I II ( t ) [res tivly, 3ii I, (t) ] denote the density (respectively,

survival) funtion and conditional density (respectively, conditional survival)

function of T and *I given TI > t. Then condition (1.4b) is

equivalent to

M, InI, (t) I,(t) = M,(t)F (t).

In other words, the conditional failure rate function of Tl given TV > t

is equal to the (unconditional) failure rate function of Tie Stated

differently, the random variables 'I and I are independent "along the
I It

diagonal Tr = 7I'". This property of "diagonal independence" is of

importance in the case of dependent competing risks and is presently being

studied by the authors. Desu and Narula (1977) arrive at a condition

similar to (1 .4b) in the special case when T1 , ... , Tr have a joint distri-

bution which is absolutely continuous.

Suppose now that the functions F(t, I), I , have no common dis-

continuities. We make no assumption as to the independence of T1 , ... , Tr -

In view of (1.3), a natural estimator for l[ is

(1.) II
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where 6 J,n(t) is obtained from the right side of (1.1) by replacing

F(, I) and F by their empirical counterparts

Fn(t, I) = n-1 Z X~y , = I

and

F (t) = n "1 n X
n 1 {T i <tJl

where X A is the indicator function of the set A. LPQ(1981) show that in

this case, (1.5) is a (strongly) consistent estimator for when (1.4a,b)

hold.

Remark 1.7. If T1, ... , Tr are independent and P(Ti = Tj) = 0 for i # j,
then (1.5) reduces to the usual Kaplan-Meier (1958) estimator (1.2) or

a version thereof.

Remark 1.8. Suppose for a moment that we make no assumption on the underlying

distribution of TI, .,., Tr except that the functions F(t, I), I , have

no comon discontinuities. Let 0 _ T(O) < "'" S T(n) < (n1--

denote the ordered values of times 'TI, T'", 'n at which deaths occur.

We do not exclude the possibility of multiple deaths at T1WO We thus

obtain the (possibly degenerate) intervals [0, T(I )), 1(I) '( 2)) "

Tn)' co) such that the number of deaths in any interval is exactly one.
(n)' 0

For each interval [ (j), Tr(j+l ), estimate the proportion pj of indi-

viduals alive just after T() that survive the interval as followst
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lot N(t) = the number of individuals observed and surviving

at t, when deaths due to cause I (but not deaths due

to any other cause) at t itself are subtracted off;

and = N( T()) - N(T(j)) = the number of deaths at T(j).

Then the estimate of pj above is

P = N(-rj- )-8jIN( '(J)-).

Now, to estimate the probability of surviving until t if cause I were

the only risk present in the environment, Kaplan and Meier (1958) calculate

(1.6) 1[(t = ciiP
j=1 jo

For any given set of data, formula (1.6) yields the same numerical

estimate as formula (1.5). Recall, however, that (1.5) is a consistent

estimator of .1  if and only if (1.4a,b) hold. Yet, even in the face of

ignorance about ths truth or falsity of (1.Ja,b), we know precisely what

parameter of the under-yinz distribution is being estimated (consistently)

by (1.6), namely

(1.7)

where 0 is given by (1.1). To the authors, knowledge, this fact has

never been pointed out.
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2. The main result

In this section we outline a proof of the fact that, viewed as a

process in t, the estimator (1.5) converges to a Gaussian process. As a

result, we extend a result of Breslow and Crowley (1974) from the case of

a continuous survival to an arbitrary survival function. For simplicity,

we assume here that the distribution F of T has finitely many discontinui-

ties. The case of a countable infinity of disoontinuities will be presented

in a subsequent report.

We inquire into the asymptotic distribution of

)(t) = ]It) = Fn(a)/-n(a')J
J 1 Jia< t

where the last product is over the set of observations { a } such that

= a and i = J, i = I, .. , n. Let this set {a) of points be denoted

by D(n, J) and let C(J) C D(J) ] be the set of continuities (discontinuities)

of the function F(t, J). Then we can write

4[3 M ( ') = Y T~e n,J (t) _ H JWt
(2. 1) tn -

' *dn;H j(t) - Hj(t)] eH(t) + YCHn j(t) - Hj(t)J2eH*(t)

where H n,j(t) = in [ Fn(a)/ (a-)X (a) .a< t D(n, J)

H (t) I t In C F(a)rF(a-)] ?( (a) . Jt dFC(.t j)rF, and the function
a S t D() 0

H... is bstw.n ...(t) and Hj(t).
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We consider fiLrat the asymptotic distribution of 'V [Hn ,j(t) - Hj(t)]

We have

^4 H (t) - H (t)J 4n[A -,j(t) - A (t) +Vn[Bn j(t) - B(t)J ,

where A nj(t) =a [ n(a)/Fn(a-)] X (a) - X(a)
a ~t D(n, J) D()

A (t) = in C (a)/F(a') X (a)
a < t D(J)

nJ(t) Z n nni()i(a)] ?(a) X (a) ,and

We can now state

Theorem 2.1 Assume that each function F(-, J), J E 4 , has finitely

many discontinuities. Fix J and let 0 < a, < ... < a, < co denote

the discontinuities of F(t, J). Then the k-dimensional random vector whose

ith component isi

4f-. I E{nC n(aj)/Fn(aj)3 - in [ (a ) f(aj

converges in distribution to a k-dimensional multivariate normal with mean

vector 0 and covariance matrix = (0.j), which can be represented thus:

b 1 bi bi ... b

bI  b b2  oo. bl+b 2

- b1  bl+b 2  bl+b 2+b3  o,, b.+b2 +b3

0

bi bl+b2  b1+b 2+b3  ... b1 + .*. + bk

where b1 = F(ai) F(ai) - F(a.-)/F(a-)] , i = t, ... , k.

,.
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The proof of Theorem 2.1 is straightforward and is omitted.

Now define a process ZJ, 1 (t) in D = D CO, 0(F)] whose finite-dimensional

distributions are multivariate normal with EZJ, 1 (t) = 0 and

Cov[ ZJ 1 (s). Zjl(t)] = for s E C ai , ai+I ), t E L aj, aj+I ) , s < t

( Mfor s >t;

where Or is the (i,j)th entry of r in Theorem 2.1 and D[0, 0(F)j is

the space of functions on C 0. 0 (F)] that are right-continuous and have

left-hand limits. Such a process exists by Theorem 15.3 of Billingsley (1968).

Theorem 2.2. The process 4Wn[AnJ(t) - Aj(t)] converges weakly to Zj,1 (t)

as n -4 wo

Proof Note that 'fnCA (t) - A(t)
-n,J J

%n 11{ I n nC (ai)/Fn(ai')] D(Jn)(ai) in '-(ai) (a')

for tE aja~). For8a i - a1i jkit is easily seen

that w( )=sup min ( IXn(t) - xn(tl)l , IXn(t2) - Xn(t)I )=0

where xn(t) = Anj(t) - A (t)] and the supremum extends over t, tl, t2
such that t I s t < t 2 and t 2 - t I  The theorem follows from

Theorem 2.1 above and Theorem 15.4 of Billingsley (1968). 11

Breslow and Crowley (1974) show that the pair (X, Yn) E D [O, 0 (F)) X

D [0, Q (F)3 defined by %=n= f(Fn - V)- Yn~ ~~c J (a)D(<n taf
OW

- F'(-. J)J converges weakly to a bivariate Gaussian prooess (X, Y) which has

mean vector zero and a covarianoe structure given by

C
( Cov(X(s). X(t)) = F(s)7(t). Cov(Y(s). Y(t)) - F (s. J) [, - FC(t, J)]

( Cov(Y(s). X(t)) = 7C(s. J)F(t), Cov(X(s). Y(t)) F FC(s. J) - F(s)F(t. j).
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Thus, by Theorem 4 of Breslow and Crowley (1974), the process

-n-[Bn~j(t) - B (t)] converges weakly to the Gaussian process ZJ,2(t)

defined by

zJ, 2 (t) = jt I:][/2 dFC(" J) + [Y(t)/F(t)] - j I d(1/F),0 0o

where (X, Y) is the bivariate mean 0 Gaussian process satisfying (2.2).

Furthermore, the covariance structure of the limiting process ZJ,2(tN

can be obtained in a manner similar to that in Breslow and Crowley

(1974).

Combining this result with Theorem 2.2 above, we have

Theorem 2.3. The process NrVn[H n(t) - Hj(t)] converges weakly to the

Gaussian process Z,1(t) + ZJ,2(t) Z (t).

Remark 2.4. The covariance structure of the limiting process in Theorem

2.3, as well as in the remaining theorems, may be obtained in a tedious

but straightforward manner. The exact derivations are given in a later

report.

Consider now (2.1 ). Since / T j(t) -H(t)] converges weakly, the

second term in (2.1) converges to 0 in probability. Thus, we have

Tbeorem 2.5. T process 4 [o (t) - Gj(t)] converges weakly to the
n,J

Gaussian process Z (t)'Gj(t), where Zj(t) is the limiting process in Theorem 2.3.

Remark 2.6. Finally, by an application of the so-called 6 -method

r cf. Rao (1973), we see that the estimator Mi (t) given by (2.2) also

converges weakly to a Gaussian process.
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